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ABSTRACT

Clinical Quality Language (CQL) has emerged as a standard for rule representation in Clinical Decision Support (CDS) and
Electronic Clinical Quality Measurement (eCQM) in healthcare. While open-source reference implementations and a few
commercial engines exist, there is still a market need for high performance engines that can execute CQL queries on the scales
of millions of patients. We introduce the HERMES engine as the world’s fastest commercial CQL execution engine.
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1 INTRODUCTION

Clinical Decision Support (CDS) provides the right information to
the right decision maker at the right point of decision time [2]. Elec-
tronic Clinical Quality Measurement (eCQM), on the other hand,
is a mechanism for measuring and assessing the outcomes and pro-
cess after the fact [1]. CDS informs before something happens, and
eCQM measures what happened. Thus, they are two sides of the
same process.

Computationally, CDS and eCQM are somewhat fundamentally
at odds. CDS requires low-latency for intervention at the point of
care, while eCQM requires execution at very high Throughput for
measurement of clinical results. eCQM rule authoring relies on a
priori knowledge in their creation. One may be tempted to think that
the time it takes to execute against a population is irrelevant in a
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measurement scenario, however the reality is that computations on
conventional systems can take days. It would be far more advanta-
geous to execute in seconds, allowing organizations to inspect and
adapt for better outcomes. In the time between reporting periods, a
variety of technical, organizational, and care changes may have come
into play. The results of the reports become stale and unactionable
almost as soon as they are computed.

An ideal approach would allow a single solution to compute eCQM
and replace aging rules systems (such as prior authorization). Custom
rules could be written in CQL or another language (such as SQL)
and run on the same platform.

Big data has been characterized in terms of (at least) 4 “V’s —
volume, velocity, variety, and veracity. This is especially applicable
to health data [10]. Big data solutions require a high level of computer
science expertise to operate effectively. The healthcare informatics
requires a high level of expertise in the domain and relevant standards.
That presents a challenge to Health IT experts who must possess
both skills to build expensive systems. Health IT-specific methods
of encoding rules such as CQL have also emerged, but they are not
inherently able to operate at the scale of big data solutions. Thus, both
of these approaches suffer from a disparity between the knowledge
required to operate each of them.

CQL has proven effective in quality reporting initiatives in the
United States, as well as in various clinical settings [15, 7, 8]. But,
CQL only works with structured data, while around 80% of data is
unstructured [4, 17]. An ideal solution would leverage the capability
of big data tools to allow options for unstructured data and machine
learning.

The HErMES engine bridges the gap between the domains by com-
piling CQL into code that is executable on big data and streaming
pipelines, while optimizing and encoding health-specific knowledge
directly into the computations, allowing superior performance. More-
over, by allowing for a variety of execution runners, HERMES also
decouples from the underlying technology.
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Figure 1. Schematic representation of the rationale of the HERMES engine.

2 BACKGROUND AND RELATED WORK

Rule-based approaches (such as RETE) require that rules and data fit
into working memory. As rule sets and data increase, the amount of
memory required increases more than linearly (a phenomenon known
as “memory explosion”) [9]. Eventually, the working set becomes
sufficiently large and the system breaks down. Similarly, small, fast
interpreters fail when data sets become exceedingly large [19, 14].
Such algorithms are not appropriate for execution against large popu-
lations, making them ineffective on eCQM and rules executed against
many patients.

Technologies in the big data ecosystem such as Apache Spark,
Kafka, Flink, and Cassandra execute computations on large sets of
data by partitioning the data and moving the computation to the
data [4, 19, 14]. Data movement has become the new bottleneck and
open research shows that systems that carefully minimize movement
perform better [11]. Apache Flink has emerged as one of the fastest
computational platforms available [18, 5].

Decoupling the underlying execution technology from the query
engine (as it is done by Apache Beam [16]) allows for a variety
of “runners”. In addition to decoupling, the next generation of sys-
tems will interpret queries by their intent and optimize accordingly
[13]. These systems should not only work with batch loads, but also
streams. Big data streams are generated continuously at unprece-
dented speed, yet allocating the cloud resources necessary to make
them successful has emerged as a major research problem [12].

Ideally, one would compile CQL into some code that can run on top
of another widely-accepted computational platform (runner). Such
a solution would also meet the needs of optimizing stream vs batch
workloads. Additionally, purpose-built systems are faster than gen-
eral purpose systems because they can exploit certain characteristics
of their domain that general-purpose systems cannot. For example,
Health data encodes semantic meaning within it and has standardized
components which are immutable and hence represent good candi-
dates for optimization (e.g., a versioned, standardized Value Set).
Whereas a general-purpose system is not able to infer this from a
generic structure.
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Table 1. Table of Workloads. Columns represent millions of records for each
Workload id (e.g., Workload 100M has 100 million patients and 2.25 billion
resources in the set).

IM 10M 50M 100M

Patients 1 10 50 100
Conditions 2 20 100 200
Encounters 3 30 150 300
Medications 5 50 250 500
Procedures 1 10 50 100
Observations 5 50 250 500
Coverages 5.5 55 275 550
Total 22.5 225 1,125 2,250

While open source CQL execution engines do exist, they suffer
from serious performance problems because they are not horizontally
scalable. Horizontal scalability is essential in reducing costs and
increasing performance since vertical systems quickly run into high
costs and hardware limitations [4]. Those engines’ only recourse is
micro-optimization, but that cannot achieve improvements of orders
of magnitude.

A purpose-built CQL compiler/execution engine that has the char-
acteristics mentioned above would be far superior to other systems. In
the following section we will demonstrate how HErRMES characterizes
such a system by means of realistic workloads.

3 METHODS

Our HeErMES engine is structured as depicted in Figure 1: the CQL
query is parsed in order to provide a proper input for the Flink Code
Generator, which creates the code that is in turn used to spun the
Flink Cluster. This cluster does the actual heavy job by utilizing as
an input the CQL Parameters, the Valuesets, and the Patient Data.
To test HERMES’ computational ability, we decided to assess its
performance when evaluating a quality measure chosen from the



HEDIS 2022 FHIR set. The HEDIS measures are a set of standard
rules that hospitals and payers must report annually. We selected
BCS for its diverse workload (complex temporal logic) and variety
of resources consumed, but was also a fair representation of the "av-
erage" complexity. In order to assess the engine under a variety of
situations, we considered different workloads, as shown in Table 1.
Moreover, we also considered different configurations, correspond-
ing to different hardware capabilities (see Appendix A). Therefore,
in practice, we run a grid of tests where the engine was executed for
each combination of Workload and configuration.

1 define "Numerator":

2 exists ([Observation: "Mammogram"] m
3 where m.effectiveTime

4 ends during <time window>)

6 define "Denominator":

AgeInYearsAt(date from

8 end of <time window>

9 )in Intervall[52, 74]

10 and Patient.gender.value = ’female’

11 and <Member coverage in

12 time window with only allowable gaps>

14 define "Exclusions":

15 exists([Encounter: "Hospice Encounter"] e

16 where e.status='completed’

17 and <in time window>)

18 or exists([Procedure: "Hospice Intervention"] p
19 where p.status=’finished’

20 and <in time window>)

21 or exists([Procedure: "Mastectomy"] p

22 where p.status=’completed’)

24 or exists([Condition: "Absence of Breast"] c
25 where c.prevalencePeriod
26 <in time window>)

Listing 1: Example of implementation for the BCS CQL

HEerMmESs has both a streaming and batch mode, but tests were per-
formed in batch mode to determine computing power and Throughput
achievable on 100 million patients and 2.25 billion resources (obser-
vations, conditions, medications are all resources). The engine must
have sufficient work so that it has substantial computation (we want
it to work intensively). That is measured in two dimensions: 1) diffi-
culty of the computation and 2) large enough selectivity. Selectivity
refers to the number of matches in a computation (in this case, the
number of matching patients in the set). HERMES excels at eliminating
non-matching records using its internal indexing scheme and Flink’s
partitioning and worker semantics. A more naive approach would
require each record to be unpacked, deserialized, and computed only
to find it does not match. HERMES recognizes immediately that a
record does not have a matching code, for example. A set with small
selectivity (100 million patients with 1% matches) would return too
quickly, playing into the HERMES’s strength. While this would show
a massive performance advantage over other systems (three or more
orders of magnitude) — and low selectivity is a typical scenario —
it wouldn’t tax the system sufficiently.

What makes HErMES exceptionally well suited for execution on
large sets is that it rewrites computations into relational algebra,
then performs set operations on them (complete with predicate push-
down and other optimizations). In order to see the effect of such
optimizations, it is important to have exaggeratedly high selectivity.
We chose an arbitrary value of 20% for our test scenarios.

Let’s explore an example of the engine’s behavior when applied
to a specific CQL search. A common function in CQL is retrieve.
Retrieve is essentially a join between ValueSets and another resource.
For example, line 2 of Listing 1 is a join between Observations and
the Mammogram Valueset on their respective code properties. The
Mammogram ValueSet can contain hundreds of breast cancer codes.
In relational algebra, this would be known as a left outer join. In order
to perform this operation, Flink would need to load the smaller rela-
tion (Valuesets) into memory and stream the larger (Observations).
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Figure 2. CQL Exclusions executed as written by an interpreter, i.e., the
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Figure 3. CQL Exclusions optimized for parallelism for the same function
f giveninput i. Notice that the graph for Procedure has multiple ramifications
because Procedure may be scanned multiple times.
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Still, all matches would need to be remembered, which, over tens or
hundreds of millions of matches, consumes gigabytes of RAM.

HermEs’ VS HyperCache feature eliminates this by creating a join
operation that pre-compiles Valusets and distributes them to each
Flink Taskmanager, substantially reducing the memory footprint by
a factor of 5-10x.

3.1 Configurations

We run our test adopting different system setups on Amazon Web
Services cloud (AWS), in order to explore the dependency of the
engine’s performance on the specifics of the hardware. In this context,
a “configuration” represents the set of parameters which uniquely
describes a given setup. A variety of configurations were explored,
possessing different computational cores, virtual memory, etc. — see
configurations details in Appendix A.

We chose EC2 instances that were optimized for compute and
memory. We then varied the amount of resources given to each
worker and varied the number of workers.

A taskmanager is an independently operating worker node that
can run either on the same machine as other worker nodes, or on
independent machines in a cluster. Taskmanagers are coordinated
by a jobamanger, whose primary responsibility is to distribute and
collect work. Taskmanagers can themselves divide work into smaller
components called slots. Parallelism refers to the number of slots
available to each Taskmanager. Thus a cluster may have hundreds or
thousands of slots (e.g., 10 Taskmanagers with 10 slots each yield a
total of 100 slots cluster-wide).

3.2 Rules

For this test, we selected the Breast Cancer Screening measure (BCS).
A common convention for CQL quality measurement is to divide the
top level rules into three main rules: Numerator, Denominator, and
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Exclusions. This specific nomenclature arises from the fact that
quality measurements are intended to be reported as a ratio of the
number of patients in which a target action was performed, over the
size of the population eligible for that action. In other words, the
proportion of patients that had something done to those that should
have.

For example, in the case of the breast cancer screening (BCS)
introduced above (see Listing 1):

e Numerator represents the number of women who had at least one
mammogram within the previous 27 months (the time window),

e Denominator is the number of women eligible (between the ages
of 52 and 74 who visited the office),

e Exclusions are the women who shouldn’t be accounted for, pre-
sumably because they are already under treatment or a care plan (e.g.,
women who had a mastectomy, are in hospice, have advanced illness,
are in long term care, etc.).

Instead of reporting the total ratio, however, the current state of
the art is to pre-compute values atomically, allowing downstream
systems to total them in a report.

In BCS, Numerator is a set operation that scans observation codes
within a time window. Since HErRMEs indexes both time and codes,
the operation computes extremely quickly.

Denominator adds the complexity of a join between resources (cov-
erage and computing age). The coverage computation is particularly
expensive since it aggregates coverage rows grouping, reducing, and
eliminating entries in search of gaps. Exclusions is the most com-
plex and must scan a number of tables: Procedures (a few times),
Medications, Encounters, Conditions, Patients, and Observations.
Ultimately, Exclusions performs a union and distinct operations on
all of those tables for a positive match. Distinct Union is notori-
ously expensive because a system must remember the keys of the
entire table. HERMES’ VS HyperCache was designed overcome this
scenario.

Executing the three operations together, while intensive, may also
present an opportunity to reuse computation. For example, if a system
could recognize that Procedures is scanned many times, it could
combine the operations for substantial performance savings.

Most interpreter-based execution engines will translate the CQL
to Expression Logical Model (ELM) and execute it sequentially as
shown in Figure 2. ELM is a logical specification standard (an Ab-
stract Syntax Tree), but it is not compact enough to execute directly
in a performant manner. A better approach is shown in Figure 3: the
functions related to the resource scans could all be done at the same
time on multiple slots. Note the f5 and fg could actually operate
on Procedures at the same time (or perhaps even become the same
computation).

3.3 Workload: Synthetic Data Generation

So far we have presented the CQL rules and explained their rationale,
but how were our tests performed, in practice?

First, we needed a dataset on which to apply the rules. For this
purpose, we needed be to run HErRMEs against a synthetic dataset
modeled over the structure of the fields expressed in the BCS measure
(see Figure 3.3). This artificial dataset shall satisfy the following 2
properties. First, it contains between millions to hundreds of millions
of synthetic patients; this is desirable because a large dataset provides
a stress test that is sufficiently challenging for our engine. Second,
it should allow us to control the volume of matches produced by
executing a given search (namely, the one in Listing 1). This is
an extremely significant p arameter, b ecause an e ngine’s workload
scales, at the first order, with the number of expected matches. One
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Figure 4. Structure of the synthetic dataset used for the performance test.
The figure shows the entries for a single patient, which pertain to different
tables, i.e., only the Patient table contains one single row per patient, all
the other tables may contain multiple rows indexed by the same patient ID.
The magnified table shows an example of the possible column contents. The
different tables are organized in 3 major groups: Numerator, Denominator,
and Exclusion Criteria. The ‘ANp’ and ‘ORr’ logical relations signify which
conditions shall be satisfied for a match to happen.

key factor in a successful engine design is the ability to quickly
discard irrelevant information, focusing on the potential matches in
order to save computational time. What we sought was a database
containing plenty of irrelevant information which would overload a
sub-optimal engine. As previously mentioned, we aimed at having
about 20% matches.

The generation of artificial structured (tabular) data is an active
field of research [e.g. 6], which includes advanced techniques such as
generative-adversarial networks [GANs; e.g., 3]. Yet, to our knowl-
edge, there exists no simple tool to generate data which can guarantee
a preset number of matches given a [CQL] rule — the most impor-
tant structural factor we had to account for. In fact, for the purposes
of this test, it is not necessary for the data to be sampled according
to a realistic distribution. It is more important to determine whether
results fell within/outside the matching ranges set by the search rules.

Therefore, we ultimately resorted to creating our own data with a
more direct approach. Given that we wanted a 20% match rate, we
simply sampled random dataset entries such that they fell within/out-
side the search ranges accordingly. We can categorize the synthetic
entries into 2 types, according to this definition:

valid entry
in-valid entry

— within the allowed range
— outside the allowed range

where the allowed range is set by the rules (specified in §3.2). Notice,
though, that a valid entry does not automatically yield ‘a match’!
Because of the database format of Figure 3.3, a match is returned
whenever there is a match between the search query and either of
the Denominator, Numerator, or Exclusion entries as a whole. More
specifically:

e For the Denominator, 1 valid match is yielded when both the
Patient and Coverage Tables are valid in all their entries

e For the Numerator and Exclusion, 1 valid match is yielded when
either of their composing Tables is valid in all their entries



The generation problem then becomes:

How shall we distribute valid and in-valid entries across
the dataset, so that they collectively yield to matches for
20% of the data volume?

The number of data per patient are given by the sum of Denomina-
tor (D), Numerator (N), and Exclusion (E) data per patient. Note,
though, that we want to generate a variable number of such data.
Therefore, let’s consider their average numbers: uc, un, and ug,
and estimate the data volume per patient, Tp, as:

Tp = Up + N + HE 1)
and, from there, derive the amount of valid data per patient Vr,

(proportional to the number of computations that will result in a
match for that patient), given a ratio r of desired matches (e.g. 20%):

Vi, =rTp =r (up +UN + UE)
ST UD +T UN +T UE 2
Let’s now recollect that Denominator, Numerator, and Exclusion
are actually composed by multiple tables, each having a set of entries
(their columns). E.g., Numerator is composed of a single Patient (P)

table, and a Coverage table, both of which shall host valid entries
to return a match. We can therefore re-write Equation 2 as:

VI, =rup +r UN +7 UE

=r (PXuc)+runN +r ug

=r(EXpuc)+runN+rue 3)
where ¥ is just a placeholder to remind us that even if we have 1

single Patient table per patient, that must be actually sampled. We
can redistribute r between Patient and Coverage tables:

Vr, = (N xNruc) +r un +1 ug )
We can read this equation as:

“ At generation time, we have to sample a matching Pa-

tient table row \Jr of the times, a matching Coverage table

row \Jr of the times, and any of the N or E tables rows r

of the times”.

We are just left with defining what is a “matching table row”, but
that is trivial: a row whose entries are all within the ranges allowed
by the rules. In other words, when a row is to be generated:

as matching —
as not matching —

all of its entries are sampled as valid
at least 1 of its entries is sampled
as in-valid.

With this rationale, we created 4 synthetic datasets of different
sizes, hosting 1, 10, 50, or 100 million (respectively labelled 1M,
10M, 50M, and 100M) synthetic patientsl. In the remainder, we
refer to these test datasets as ‘Workloads’.

3.4 Test Setup

We chose Flink as the underlying runner and compiled BCS to a jar
file, distributed on each cluster configuration. We stood up several
cluster configurations (see Appendix A) and executed the various
Workloads (see Table 1) against each configuration.

We also tested the effect of a variety of index formats (Apache

I Note that, for consistency, we made such that the larger datasets include
the smaller ones.
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Figure 5. Comparing Throughput of the CQL computation using Apache
Avro, Parquet, or Orc file types, the 50 million patient Workload illustrates
the relative performance indicative of all Workloads we tested. In every
Workload, Apache Orc was the fastest.

Avro, Orc, and Parquet). Finally, we compared executions with VS
HyperCache enabled vs disabled.

4 OBSERVATIONS AND TEST RESULTS
4.1 Index Format

HEerMEs is capable of ingesting data in a variety of formats. During
the compilation phase of CQL, it identifies which elements are ref-
erenced and indexes them (such as a patient’s age, or a medication’s
code). These indexes are used at runtime rather than the original
FHIR data for computations. This reduces the size of the data scat-
tered across the cluster by two or more orders of magnitude. The
index format can be any format specified through format connec-
tors. We tested Apache Avro, Parquet, and Orc. Apache Avro has
gained popularity through its use in Apache Kafka and has several
advantages (such built-in schema definition, version evolution, and
serialization/deserialization performance). Apache Parquet and Orc
are columnar formats which allow advanced optimizations such as
predicate push down.

As can be seen in Figure 4, Apache Orc was the fastest in all
cases, so from this point forward, we will exclude the other formats
in discussion for simplification.

4.2 Workloads

HermEs’ advantage as a Throughput-optimized computational en-
gine can be observed in Figure 4. As workloads increase (10M, S0M,
and 100M), so does the Throughput, correspondingly (16, 55, and
66 million resources per second). The advantage of cost amortiza-
tion of dividing and distributing work among a cluster pays off with
more data. But, it also shows the advantage of applying predicates
intelligently to reduce the amount of data moving between steps in
the topology as early as possible. Engines commonly apply compu-
tations across the patient space, thus requiring traversal of all of the
data because they never reduce the set. HERMES rewrites the com-
putation to work across the resources first (medications, conditions,
observations, etc.) reducing the work to be done at later stages.
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Figure 8. Comparing the distribution of resource budgets. The data points
are size-coded based on the the ratio of Taskmanagers over Cores (T'0C),
which implies a larger (lower) distribution of work for higher (lowerBecause)
values. The two different marker types refer to the activation (or not) of the
HyperCache feature.

Thus, the more records to process, the faster HERMEs gets.
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4.3 Resource Arrangement: Budgets and Slots

Within a specific budget of resources (a given CPU, RAM, or other
constraints), there are still decisions to be made as to how best to
use them. For example, multiple configurations use a total cluster-
wide consumption of 80 cores and 320 GB of RAM. How should such
resources be distributed? Should we favor fewer, larger Taskmanagers
(10 with 8 cores and 32GB of RAM each) or many, smaller ones (40
with 1 core and 8GB of RAM each)?

We label “ToC” this relationship of Taskmanagers to resources
(specifically, cores). A smaller ToC indicates relatively fewer, larger
Taskmanagers, while a larger ToC indicates relatively more, smaller
Taskmanagers.

Slots are the logical execution cores that are parallelized in a
computation. The total number of slots in a cluster are computed as

Nglots = Nparallelism X Ntaskmanagers

Is it better to have a single slot per Taskmanager, or to have multiple
slots per Taskmanager?

Figure 4 shows that the way we distribute the resources on the
cluster (ToC) and the number of slots cluster-wide are related in
the way they affect Throughput. A smaller number of slots (200)
performs well (about 56 million resources per second) on a smaller
ToC (larger Taskmanagers), whereas increasing the number of slots
(to 800) allows the larger quantity of smaller Taskmanagers to do
more work. Note that at the extreme end of the chart lie the two
fastest configurations, namely:



(i) 800 Slots, 0.5 ToC, VS HyperCache On
(i) 400 Slots, 0.25 ToC, VS HyperCache Off

The first (with VS HyperCache enabled) allows for many more
slots because the memory required for each is far less. The sec-
ond could not run as many slots and Taskmanagers because each
Taskmanager required at least 12GB of RAM. VS Hypercahce effec-
tively reduced the amount of memory required per Taskmanager.

Many smaller Taskmanagers is preferable because the jobmanager
may be able to schedule them for other rules sooner. This happens
because each of them is doing relatively less work, and hence they
complete more quickly individually. VS HyperCases proves effective
in reducing the memory footprint, allowing for higher parallelization.

4.4 Cost

One key element of the performance analysis is estimating the cost of
the hardware setup used to execute an engine’s search. This is trivial
because given a task of any engine — no matter how inefficient
such an engine may be—, there will always be a hypothetically more
expensive setup that can boost that engine’s performance.

The cost of the configurations we tested was estimated by adopting
the price-per-hour (CpH) of the cloud service that was utilized (Ap-
pendix B), and re-normalizing it by the resources that we actually
allowed Flink to access (see Appendix A). For example, Image Type
M5.24XLARGE costs $4.08 per hour with its 384 GB RAM and 96
cores, but e.g. configuration C18B — based on the aforementioned
MS5.24xXLARGE — uses only 16 GB RAM and 2 cores.

We can think of the CpH of a given Image Type i as the weighted
sum of its CPU and RAM resources times the unit cost u;:

CpH = (aNc¢,; + Ny ;) X u; (5)

where N.; and N, ; are the CPU and RAM units in Image Type
i, respectively, and « is the weighing factor that accounts for the
different cost of a unit of 1 GB of RAM and 1 core. This weighting
factor can be calculated by comparing the market cost of a ‘building
block’ of RAM (64 GB) and one of CPU (8 cores); we roughly
estimated a ~ 6.

Notice that u; is the unit cost per CPU or RAM resource, irre-
spectively, for Image Type i. So we can reverse the above formula,
to get the unit cost u; (which is all we need to estimate the cost of a
configuration):

_ CpH
B aNe¢,i + Ny

uj (6)
Following on our example for Image Type m5.24XLARGE, Appendix B
gives CpH; = $4.608/h, N ; = 96, and N, ; = 384, hence we obtain
u; = $4.608/(6 x 96 + 384) ~ $0.005/h/resource.

With u; at hand, we can calculate the cost-per-hour for any con-
figuration (CpHcon fig) derived from Image Type i, which utilizes
the actual resources N, and N,-2. simply as:

CpHconfig = (@Ne + Ny) X u; (7

For example, let’s calculate CpHopfig for configuration C18B,
which is based on Image Type m5.24xLARGE. From Appendix A we

2 Do not confuse N, and N, with N, ; and Ny ;: the former refer to the
configuration-restricted resources, the latter refer to the maximal capacity of
Image Type i that the configuration is built upon.
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have N. = 2, N, = 16, and using the previously calculated u;, we
obtain CpHeopfig = (6 X2 +16) X $0.005 = $0.14 /hour.

As Figure 4 and 4 show, the fastest configuration was also one of the
least expensive at 1/3 the cost.

5 CONCLUSIONS
5.1 Conclusion

Performance. HErMEs performs exceptionally well with large data
sets. In fact, the more data it is given, the more records per second it
can compute because the cost of distributing the workload is quickly
recovered. It is also extremely efficient at computation sharing.
Cost. HERMES provides an excellent trade-off between top perfor-
mance and cost, operating at approximately 66 million resources
computed per second at less than $2 per hour. More aggressive
pricing models (such as spot pricing) would cost far less ($0.89
per hour). While not specifically tested, the cluster creation time in
a kubernetes-style deployment (as is supported by HErMES) allows
new pods to be spun up nearly instantaneously, further reducing costs
by resource-sharing.

Resource utilization. Internal features such as predicate push down
and VS HyperCache, proved extremely effective at reducing memory
and compute consumption. HERMES is highly parallelizable, working
best with many small workers.

Eco-system friendly. Finally, HErMEs is effective at using a variety
of big data technologies such as Apache Flink, Orc, Kafka, Parquet,
etc., and orchestration technology such as Kubernetes.

5.2 Future Work

The goal of this test was not to tune HERMES, but rather understand
its performance characteristics and trade-offs. Undoubtedly, addi-
tional tuning (such as determining the optimal partitioning of data
for maximizing parallelization) would have lead to higher Through-
put or lower cost. What is the trade-off between partition size and
Throughput?

Future tests should also measure the effect of executing multiple
rules simultaneously, and the increased global Throughput resulting
from combining rules on the same data in the same execution job.
Additionally, durably caching intermediate state in future versions
of HErMEs is also an area for improvement. Could performance be
gained by analyzing the entire rule space and determining which
portions of data could be shared between them, thus amortizing the
cost of caching to increase Throughput?
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APPENDIX A: TABLE OF CONFIGURATIONS
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ID Image Family  Taskmanagers Cores/TM Ram/TM (GB) Parallelism Network BW EBS BW
C1 c6id 2 1 12 10 12 10
C2 c6id 5 1 12 10 12 10
C9 c6id 2 4 12 10 12 10
C10 c6id 5 4 12 10 12 10
(03] c6id 2 1 24 10 12 10
C13 c6id 2 4 24 10 12 10
C13b c6id 2 12 24 10 12 10
C3 c6id 10 1 8 10 37 30
C3b c6id 10 1 15 10 37 30
C6 c6id 5 1 30 10 37 30
C4 m5 10 1 32 10 25 19
C4B mS5 10 1 32 20 25 19
c4acC m5 10 1 32 5 25 19
Cl6 mS5 10 4 32 10 25 19
C16B mS5 10 4 32 20 25 19
C16C m5. 10 4 32 5 25 19
Cl17 mS5 10 8 32 10 25 19
C17B mS5 10 8 32 20 25 19
C17C m5 10 8 32 5 25 19
C19 mS5 10 2 32 10 25 19
C19B mS5 10 2 32 20 25 19
C19C m5 10 2 32 5 25 19
CI18 mS5 20 2 16 10 25 19
C18B mS5 20 2 16 20 25 19
C8 m5 20 1 16 10 25 19
C8B m5 20 1 16 20 25 19
C12 mS5 20 4 16 10 25 19
C12B m5 20 4 16 20 25 19
C24 m5 20 4 8 10 25 19
C24B mS5 20 4 8 20 25 19
C22 m5 40 2 8 10 25 19
C22B m5 40 2 8 20 25 19
C22C mS5 40 2 8 5 25 19
C23 m5 20 2 8 10 25 19
C23B m5 20 2 8 20 25 19
C25 mS5 20 2 4 10 25 19
C25B m5 20 2 4 20 25 19
C20 m5 12 2 8 10 25 19
C20B mS5 12 2 8 20 25 19
C21 m5 12 2 9.5 10 10 4.75
C21B m5 12 2 9.5 20 10 4.75
C21C mS5 12 3 12 10 10 4.75
C21D m5 12 3 12 20 10 4.75
APPENDIX B: TABLE OF CHARACTERISTICS OF AWS EC2 TYPES
Image Per Hour  Per Hour  Reserved CPU Memory Cores Network EBS Storage
Type Cost Spot Cost Cost (Intel) (GB) Bandwidth  Bandwidth
(Gbps) (Gbps)
c6id.8xl1 1.61 0.7571 1.016 Xeon 8375C (Ice Lake) 64 32 12 10 1x1900 NVMe
c5.24xl1 4.08 1.836 2.57 Xeon Platinum 8275L 192 96 25 19 EBS
m5.24x1 4.608 2.163 2.903 Xeon Platinum 8175 384 96 25 19 EBS
m5.2x1 0.384 0.1871 0.242 Xeon Platinum 8175 32 8 10 4.75 EBS
c5id.24x1 4.838 1.664 3.049 Xeon 8375C (Ice Lake) 192 96 37 30 4x1425 NVMe
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